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Abstract

We use observed movement tracks of Atlantic bluefin tuna in the Gulf of Maine and mathematical modeling of this movement to

identify possible resource patches. We infer bounds on the overall sizes and distribution of such patches, even though they are difficult to

quantify by direct observation in situ. To do so, we segment individual fish tracks into intervals of distinct motion types based on the

ratio of net displacement to length of track ðDD=DLÞ over a time window Dt. To find the best segmentation, we optimize the fit of a

random-walk movement model to each motion type. We compare results from two distinct movement models: biased turning and biased

speed, to check the model-dependence of our inferences, and find that uncertainty in choice of movement model dominates the

uncertainties of our conclusions. We find that our data are best described using two motion types: ‘‘localized’’ (DD=DL small) and ‘‘long-

ranged’’ (DD=DL large). The biased turning model leads to significantly better resolution of localized movement intervals than the biased

speed model. We hypothesize that localized movement corresponds to exploitation of resource patches. Comparison with visual behavior

observations made during tracking suggests that many inferred intervals of localized motion do indeed correspond to feeding activity.

From our analysis, we estimate that, on average, bluefin tuna in the Gulf of Maine encounter a resource patch every 2 h, that those

patches have an average radius of 0.7–1.2 km, and that, overall, there are at most 5–9 such patches per 100 km2 in the region studied.

r 2006 Elsevier Ltd. All rights reserved.
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Over the last decade, populations of major fish stocks
worldwide have dwindled to near collapse (Pauly et al.,
1998). Conservation efforts mandate a fuller understanding
of the foraging, navigating, and migrating behavior of
economically important fish such as Atlantic bluefin tuna
(Thunnus thynnus L.), the subject of this paper. A number of
groups have worked on collecting (Block et al., 2005) and/or
analyzing (Sibert et al., 2003; Royer et al., 2005; Wilson et
al., 2005; Sibert et al., 2006) tuna movement data. Recent
observations demonstrate that tuna school positions are
correlated with oceanic fronts and thermal features (Schick
e front matter r 2006 Elsevier Ltd. All rights reserved.
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et al., 2004). However, not all aspects of tuna school
distributions and movement patterns can be explained by
such features (Royer et al., 2004); there is a tendency to
over-aggregate at small scales and over-disperse at larger
scales. Some aspects are likely due to intra- and inter-species
interactions, particularly with prey, which are often patchily
distributed (Chase, 2002). How bluefin tuna navigate to find
resources is not well understood, in part because quantita-
tive data on movement, environment, and prey have not
been collected concurrently (Kirby, 2001; Newlands and
Lutcavage, 2001). Here we use a statistical and modeling
approach to draw inferences from a limited number of
detailed bluefin tuna trajectories about the unknown
distribution of resources they utilize in the Gulf of Maine.
In many previous animal track analyses, resource sites

were a priori identifiable, and movement behavior could
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then be directly correlated to such features. For example,
Ward and Saltz (1994) relate gazelle foraging tracks to
observed clusters of lilies in the sands of the Negev desert.
In our work, we do not assume any a priori environmental
information, but rather, we ask what can be inferred
directly from track data; where and how long did
individuals linger, and how large and closely spaced were
such ‘‘sites’’? In many previous treatments of animal and
fish movements, the main goals have been (a) to use
observations and models at the individual level to derive
population dispersal parameters (Grünbaum, 1994, 1998,
1999), (b) to use trajectories to infer the mechanisms that
animals use to navigate, e.g. by taxis or klinokinesis
(Benhamou and Bovet, 1992), or (c) to compare measures
such as displacement and mean squared displacement to
those predicted by traditional random and correlated or
biased random walk models. We are not aware of studies
that ask how information about resource patches can be
gleaned from movement paths of tuna, but a related study
on dolphins with distinct methodology has recently
appeared (Bailey and Thompson, 2006, reviewed in the
Discussion). The use of large-scale tracks to draw
environmental inferences is the significantly new aspect of
our study on tuna in this paper.

We analyse movement of bluefin tuna using data from
the Gulf of Maine (Fig. 1). Some of this data has been
presented (Lutcavage et al., 2000) and analysed (Newlands
and Lutcavage, 2001) before, but with different aims
(reviewed in the Discussion). For example, Newlands et al.
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Fig. 1. Gulf of Maine showing data points for recorded tracks of Atlantic bluefi

(thin curves). Tracks labeled 9602 and 9604a appear in Figs. 5 and 6.
(2004) looked for correlations between speed and rates of
turning along the tracks.
Here we concentrate on horizontal movement of

individuals. The vertical components of these trajectories
are on a much smaller spatial scale (Lutcavage et al., 2000)
and are here ignored. Even simple visual inspection reveals
that some tracks (e.g. labeled 9602 in Fig. 1, and also
shown enlarged in Fig. 5) have relatively straight, long-
ranged portions (eastern portion), interspersed with con-
voluted localized segments (western portion). This obser-
vation motivated our identification of distinct motion types
as localized versus long-ranged and informed our choice
of criterion for classifying such movements. However, as
seen from other tracks (e.g. 9604a in Fig. 1, and enlarged in
Fig. 6), visual inspection is not always acute or objective
enough to easily decompose a track into these two
categories. This led to our quantitative analysis and our
selection of an objective criterion to classify track portions.
Our idea is to associate putative resource patches with

localized segments of track data, and time spent searching
for resources with long-ranged segments. In the following
sections, we describe the data, how we picked a criterion
for segmentation, and how we determined the optimal
segmentation. Our segmentation optimization depends on
a movement model, and we describe and evaluate two
movement models. We find that our results on time spent
searching for resources are relatively insensitive to model
choice, but our estimates of the size of resource patches are
sensitive to model choice. We then present estimates for the
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distribution of resource patches that bluefin tuna utilize in
the Gulf of Maine. In absence of other data, these could
serve as initial estimates for concentrations of prey or other
resources.

1. Data

Our bluefin tuna movement data consist of 12 detailed
tracks recorded between 1995 and 1997 at several locations
within the Gulf of Maine. (Fig. 1 and Table 1; see also
Lutcavage et al., 2000). Each track is an independent
record of the positions of an individual adult bluefin tuna
(swimming within its school), tracked by boat with acoustic
transmitters to a resolution of a few meters for up to 48 h.
For most tracks, the median time between position
recordings was 1min, and one track (9603) sampled at a
higher rate was down-sampled to this rate. Some tracks
contained gaps of up to 1 h (Table 1). We interpolated over
such gaps with straight-line motion. (Gaps longer than
15min did not comprise more than 6% of the total
duration of any track.) It is estimated that the measure-
ment error (on the order of 10m) is approximately constant
across and between tracks. As the tracks each span tens of
kilometers, this error is small relative to distance scales of
interest in this study. Anecdotal information on tidal and
prey activity was also compiled, and we compare our
results with these observations in the Discussion section.
Vertical motions of the tuna were generally restricted
to a few tens of meters of the sea surface while horizontal
motions extended over tens of kilometers (Lutcavage et al.,
2000).

In Fig. 1, bluefin tuna tracks comprising our data set are
shown superimposed on a map of the Gulf of Maine. The
data give strong evidence of long-ranged, directionally
persistent motion (Fig. 1). Though tracks were followed on
separate days and for distinct individuals, on a global scale
of many tens and up to hundreds of kilometers, these
tracks are roughly aligned with each other and with coarse
features of the bathymetry. For example, several of the
bluefin tuna lingered near Stellwagen Bank, and two
Table 1

Track statistics

ID Duration (h) Sample interval (s)

9501 8 300

9601 29 600

9602 47 60

9603 8 13

9604a 46 61

9604b 22 61

9605 24 60

9701 47 61

9702 31 61

9703 6 61

9704 3 61

9705 47 61

Tabulated are statistics for the 12 bluefin tuna tracks considered in this study
individuals seem to track the edge of Wilkinson’s Basin.
This correlation between movement and bathymetry
motivated the inclusion of bias in the random-walk
movement models we chose to test.

2. Methods

2.1. Data segmentation

For any two times, t1 and t2, and positions along the
track, ~x1 ¼ ~xðt1Þ and ~x2 ¼ ~xðt2Þ at those times, we define
the net displacement Dðt1; t2Þ as the straight line distance
between ~x1 and ~x2, and the track length Lðt1; t2Þ as the total
(arc) length of track between ~x1 and ~x2. Then for a given
time interval Dt,

DD � Dðt; tþ DtÞ ¼ j~xðtþ DtÞ � ~xðtÞj,

DL � Lðt; tþ DtÞ ¼
X

ti2ðt;tþDtÞ

j~xðtiþ1Þ � ~xðtiÞj. ð1Þ

We occasionally use simply LðtÞ to refer to total length of
track from t ¼ 0 to time t.
On a graph of LðtÞ (e.g. gray curve in Fig. 2) the slope,

which is the fish’s swimming speed, was nearly constant
across tracks and time, despite the fact that observations
spanned roughly two days per track. We observe, however,
distinct trends in the displacement data, namely portions of
the trajectories in which displacement mirrored track
length and portions in which displacement changed very
little. (See solid and dashed black curves in Fig. 2.) This
motivates us to segment the data based on the dimension-
less ratio of net displacement to net track length DD=DL

over the time window Dt (in min).
Fig. 3 shows a flow-chart summarizing our method. We

calculate the increment in the displacement DD and the
increment in track arc length DL from the linearly
interpolated track over a time window of duration Dt

(min) centered about the midpoint of each step. The
resulting time series of DD=DL is smoothed by taking the
Fourier transform of its linear interpolation and discarding
terms with period less than Dt. Steps are then classified into
Gaps (min) Length (km) Displacement (km)

56 13

18 136 73

283 107

16 176 1

18, 26, 27 221 16

17, 53 141 6

16, 17, 53 130 6

20, 20, 27, 30 239 79

156 66

26 15

21 3

19, 37, 62, 71 261 39

. The listed gaps are all those longer than 15min.
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Fig. 2. Comparison of track length, L (km), and net displacement, D

(km), as functions of time t (h) from an initial time point. The gray curve

shows total track length as a function of time (h) for the portion of track

9602 shown in Fig. 5. Its slope, the swimming speed, is almost constant.

The dark (solid and dashed) curves show net displacements from the initial

point of each segment in our optimal segmentation, using the biased speed

movement model. Solid lines are segments of localized movement, for

which net displacement changes slowly relative to track length. Dashed

lines are long-ranged segments, for which net displacement is nearly

proportional to track length.
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Fig. 3. Illustration of the segmentation and modeling process. For each

set of thresholds r on the dimensionless ratio DD=DL and for each time

window size Dt (in min), the tracks are segmented and a movement model

fit. The fit of that model is used to score the segmentation. Inferences

about the environment can be made once the optimal segmentation has

been found.
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motion types based on their ratio DD=DL over the time
increment Dt. We term an interval of continuous move-
ment in one type of motion a ‘‘segment’’.

Most of our analysis presumes two motion types
(DD=DLpr and DD=DL4r), but as a check we also
considered the possibility of three types (DD=DLpr1,
r1oDD=DLpr2, and DD=DL4r2). The segmentation of
the data depends on the time window Dt, and the
threshold(s), r (or r1 and r2). To select these parameters
objectively, we iteratively search through many choices of
the segmentation parameters to find the optimal set. To
quantify the quality of a segmentation, we fit a movement
model to the data for each motion type, as described below.
Better segmentations result in better model fits because
they more cleanly separate the movement types. When
considering two motion types, optimal segmentation
parameters are found by searching over the region:
r 2 ð0:45; 0:90Þ, Dt 2 ð30; 90Þ minutes. Segmentation para-
meters outside this range yield qualitatively poor results.
Similarly, when using three motion types, the region
r1 2 ð0:2; 0:90Þ, r2 2 ðr1; 0:90Þ, Dt 2 ð30; 90Þ minutes is
searched.

2.2. Movement models tested

Our segmentations are scored by how well a model can
fit the movements in each motion type. When comparing
our model results and data we consider, for each step i, the
speed si, heading angle yi, and turning angle fi ¼ yi � yi�1,
defined in Fig. 4. We also consider the angle between the
current heading and the ‘‘preferred direction’’, Dyi ¼

yi � yp. The preferred direction yp is approximated
separately for each track segment as an average heading
over the complete segment: tan yp � hsin yi=hcos yi.
To test the sensitivity of our results to the assumptions

about bluefin tuna movement encoded by the model
chosen, we compare results between two biased random-
walk movement models. The details of how tuna navigate
and find their way are still uncertain, so this comparison of
two distinct models helps to put the results into a broader
context. In the first, we assume that turning is biased
toward a preferred direction, and in the second, we assume
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Fig. 4. Notation for the biased turning model. yi is the heading angle in

step i, i.e. the direction with respect to some arbitrary fixed coordinate

system. In the biased turning movement model, a prospective turn angle,

Z, is chosen from a distribution. The new unit heading vector ~u is then

further modified to include bias toward the preferred heading angle yp; a

vector of length by pointing along yp is added to ~u to obtain the actual new

heading, ~uþ by~p.
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that movement speed is biased according to the direction of
movement. Both models allow for bias in all motion types
to account for possible correlations with ocean features
(Newlands and Lutcavage, 2001; Schick et al., 2004).

2.2.1. Biased turning model

In this model, tuna movement is biased in a specific
direction by changes in turning angle, which is composed
of a random component plus a deterministic bias
component. This model is similar to the tactic model with
persistence considered by Benhamou and Bovet (1992).
They, however, apply bias by shifting the mean of the turn
distribution from which a random turn is drawn.

Our model is illustrated in Fig. 4. For each turn, an
initial turn angle is randomly drawn from a distribution
with zero mean. The unit vector in the resulting heading
direction is denoted ~u, and the final heading is found
by adding a vectorial bias in the preferred direction. This
yields a heading of ~uþ by~p, where ~p is a unit vector in the
preferred direction (determined from yp as described in the
previous section) and by is a dimensionless bias factor.

After experimenting with a variety of commonly used
turn angle distributions, we found that the best fit to the
data was obtained using a wrapped Laplace distribution
(Jammalamadaka and Kozubowski, 2004) for the random
component of the turns. For this distribution, the prob-
ability PrðZÞ of making a turn Z falls exponentially with
angular range a:

PrðZÞ / expð�jZj=aÞ; �poZpp.
The magnitude of the bias toward the preferred direction
by and the angular range a are chosen for each movement
type by maximizing the likelihood of the observed heading
angle deviation and turn angle distributions. Model head-
ing and turn angle distributions are calculated numerically
as described in Appendix A.
The speed of each step is drawn from a Gamma

distribution, the most common assumption for such
distributions:

PrðsÞ / sk�1e�s=S,

where k and S are fit separately for each motion type by
maximum likelihood.
To objectively score the segmentation parameters r and

Dt when using this movement model, we use the prediction
root mean squared error (PRMSE) (Chatfield, 2001). For
each step in the data, we calculate the mean next step
predicted by the model based on the deviation of the data’s
current heading from the segment’s preferred heading and
the segment’s current motion type. The PRMSE2 is an
average over steps of the squared difference between
predicted and actual steps:

PRMSE2
¼

1

Nsteps

X
steps

ðhxpred jydatai � xdataÞ
2

þ ðhypred jydatai � ydataÞ
2. ð2Þ

We use this scoring function for the biased turning model
because it uses only the means of the model distributions;
the full distributions are computationally prohibitive to
calculate for each possible heading angle deviation.

2.2.2. Biased speed model

In this model we assume that tuna movement is biased
by changes in speed, not turning. As seen in Fig. 2 the
variation in swimming speed is small, so we expect this
model to fit less well than the biased turning model. We
explore this model to gauge how much our conclusions
depend on the choice of movement model.
Here, for step i, the speed is chosen from a Gamma

distribution whose scale parameter S is a function of the
current heading angle yi. For the dependence of S on y we
adopt the functional form:

SðyÞ ¼ S0 þ bs S0 expðð1=ssÞ cosðy� ypÞÞ.

The magnitude of the bias is controlled by bs. For positive
bs, S is larger when the heading of the fish is closer to the
preferred heading, so, on average, speeds will be higher and
steps longer in the preferred direction, biasing the overall
motion. To fit the parameters S0, bs, and ss for each
motion type, the steps are divided evenly into 20 bins
based on their heading angle deviations. The speeds of
the steps in each bin are fit to a Gamma distribution and
the resulting values of S fit to the above form. The shape
parameter k for each motion type is set to the median of
the binned values, as we observe no systematic variation
in k.
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Turns are drawn from a circular Laplace distribution as
in the biased turning model, but no bias is applied to
turning in this case.

For this model, calculating the full distribution of turns
and speeds for a given heading angle deviation is
straightforward, so we optimize the segmentation para-
meters by maximizing the log-likelihood function rather
than the PRSME:

LL ¼
X
turns

in data

log Prðfjmotion typeÞ

þ
X
steps

in data

log Prðs j y� yp;motion typeÞ. ð3Þ

In Eq. (3) the probability of generating the observed turn f
from the model, given the motion type assigned to that
turn by the segmentation, is denoted Prðf jmotion typeÞ.
Similarly, Prðs j y� yp;motion typeÞ is the probability of
generating the observed speed s given the difference
between the current and preferred headings and the
assigned motion type.

2.3. Inferences about the resource distribution

From the optimal set of segmentation parameters using
two motion types, r and Dt, we calculate a final
segmentation and set of movement statistics. Segments
with DD=DLpr are deemed ‘‘localized’’ versus segments
with DD=DL4r that are taken to be ‘‘long-ranged’’. We
make inferences about the environment from the properties
of these segments.

In particular, we suspect that localized movement
corresponds to exploitation of resources. If we make the
simple approximation that resources are organized into
circular patches, we can estimate the extent of a given patch
by the minimal circle required to enclose one full segment
of localized motion. The assumption of circularity may
overestimate the actual patch size, but the assumption that
tuna cease localized motion only upon leaving a patch may
lead to an underestimation of patch size.

The transit time between patch encounters can be
estimated from the duration of long-ranged movement
segments. Given the average patch radius and time between
encounters, we can estimate an upper bound on the spatial
number density of patches. Each patch presents an average
cross-section of 2rp (the patch diameter) to a fish moving
toward it. Given r randomly distributed patches per unit
area, randomly moving tuna must move an average linear
distance 1=ð2hrpirÞ between patch encounters. Thus, the
mean time between patch encounters is t � 1=ð2hrpihsirÞ,
where hsi is the average velocity component of the tuna
along its preferred heading direction. We can estimate hsi
as the product of the mean step speed and the mean cosine
of the angle between the heading and the preferred
direction. t is simply the mean duration of long-ranged
motion, and hrpi is obtained from the radii of the enclosing
circles described earlier. Real tuna no doubt use environ-
ment cues to more efficiently find resource patches and
encounter resources more often than they would if moving
randomly, so our estimates of patch number density are
upper bounds.

3. Results

Results from the optimal segmentations for both move-
ment models considered are summarized in Table 2. For
both movement models we find that the segmentation with
two modes performs noticeably better than with one mode.
Additionally, for both movement models a three-mode
segmentation performed no better than the two-mode
segmentation (data not shown). Results for each individual
track in our sample are found in the online Supplementary
Material.
Examples of tracks optimally segmented using the two

movement models are shown in Figs. 5 and 6. Segmenta-
tions for all tracks are included in the online Supplemen-
tary Material. Fig. 7 shows the segmentation for each track
as a function of time.
The distributions of long-range segment durations and

localized segment enclosing radii are shown for the optimal
segmentations in Fig. 8. The mean duration of long-ranged
segments is 2 h using either movement model (Table 2). The
patches identified using the biased turning model have a
smaller average size than those identified using the biased
speed model. In long-ranged motion, the mean cosine of
the angle between the heading and the preferred direction is
0.7 in the optimal segmentation using either movement
model, and the mean speed projected along the preferred
direction is hsi � 4 km=h. The difference in estimated patch
number density is thus entirely due to the difference in
estimated patch sizes.
Our estimates for the median radius of patches are more

sensitive to the choice of the cutoff r than the window size
Dt. For either optimal segmentation, an increase in r by 5%
yields about a 10% increase in the median radius of
patches, while an increase in Dt by 5% yields a 5% increase
in the median radius. The mean time spent in long-ranged
motion is less sensitive to the segmentation parameters.
For either segmentation, an increase in r by 5% yields
about a 3% decrease in the mean duration of long-ranged
segments, while an increase in Dt by 5% yields a 3%
increase in the mean duration.

4. Discussion

4.1. Number of motion types

Our results provide evidence for two distinct types of
motion in bluefin tuna. Given either biased turning or
biased speed movement model, the model with two
movement types fits better than the model with one, and
the model with three movement types fits no better than the
model with two. This finding is related to similar
conclusions of Morales et al. (2004) who modeled elk
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Table 2

Optimal segmentation parameters and movement model parameters for the two models (biased turning and biased speed) considered

Biased turning model

Optimal segmentation parameters Optimal PRSME Single-mode PRMSE

r ¼ 0:57 129m 155m

Dt ¼ 43 min

Motion type Turning parameters Speed parameters Mean speed

Localized a ¼ 0:63 k ¼ 3:4 1.61m/s

by ¼ 0:06 S ¼ 0:5m=s
Long-range a ¼ 0:65 k ¼ 2:3 1.67m/s

by ¼ 0:56 S ¼ 0:7m=s

Median localized segment radius Percent time in localized motion Mean long-ranged segment duration Patch number density

0.7 km 30% 2h 9=100km2

Biased speed model

Optimal segmentation parameters Optimal LL Single-mode LL

r ¼ 0:66 1.11 1.16

Dt ¼ 60 min

Motion type Turning parameters Speed parameters Mean speed

Localized a ¼ 0:64 k ¼ 3:7, S0 ¼ 0:47m=s 1.60m/s

bs ¼ 0:1, ss ¼ 2:0
Long-range a ¼ 0:38 k ¼ 2:9, S0 ¼ 0:6m=s 1.71m/s

bs ¼ 0:25, ss ¼ 0:6

Median patch radius Percent time in localized motion Mean long-ranged segment duration Patch number density

1.2 km 45% 2h 5=100km2
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movements as mixtures of different motion types and
found that two types sufficed to explain the data well.

4.2. Comparison of results between the two movement

models

The optimal segmentations that we found from the two
movement models have similar distributions of long-range
segment durations, but the biased turning model yields
significantly better resolution of patches than the biased
speed model. From Figs. 5–7 it is apparent that large
patches found using the biased speed model are broken
into clusters of smaller patches if the biased turning model
is used instead.

Comparing biases found using the two movement
models we find that biases in turning are greater than
biases in swimming speeds. (The long-ranged motion bias
parameter is larger in the biased turning model, by ¼ 0:56,
than in the biased speed model, bs ¼ 0:25.) This suggests
that biases in turning are more important for bluefin tuna
behavior and implies that the biased turning model
represents long-ranged swimming behaviors more faith-
fully than the biased speed model. The higher quality of the
biased turning fit allows the corresponding segmentation to
identify patches with higher resolution.
The sensitivity of the median patch radius to the

segmentation parameters is small compared to the differ-
ence in median radius between the two movement models.
This suggests that the difference is not due to a failure to
converge on the optimum segmentation parameters for
either model, but is instead due to the inherent difference in
assumptions made by the two movement models. These
sensitivity results suggest that the dominant uncertainty in
our analysis comes from our ignorance of the perfect
movement model. Work on developing more complete and
realistic movement models will thus play an important role
in refining estimates of environmental parameters derived
from track data.

4.3. Comparison with observed feeding activity

Prey density was not quantitatively measured while the
tuna were tracked, but approximate times of observed
feeding activity were recorded (Lutcavage et al., 2000).
We can compare our periods of inferred localized motion
(Fig. 7) to these observations to test (1) whether localized
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10 km

Fig. 5. Portion of a bluefin tuna track (approximately 35 h) showing clear

separation between localized and long-ranged movement. This tuna was

moving west to east in the Gulf of Maine. The track is drawn twice to

illustrate the different segmentation results given the two movement

models we consider. Upper copy: biased speed model (tuna adjust their

speeds to maintain a heading bias). Lower copy: biased turning model

(turning is adjusted to maintain the heading bias.) In both cases, identified

localized motion is shown by solid lines and identified long-ranged motion

by dashed lines. The gray disks are minimal circles enclosing each localized

segment. We hypothesize that these regions correspond to resource

patches.

5 km

Fig. 6. Segmented bluefin tuna track with non-obvious separation

between localized and long-ranged movement. This tuna was moving

north and south in the Great South Channel. As in Fig. 5, identified

localized motion is shown by solid lines and long-ranged motion by

dashed lines. Left copy: biased turning model. Right copy: biased speed

model.
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motion corresponds to resource exploitation and (2)
whether our algorithm successfully identifies periods of
resource exploitation. Below we compare all the observed
feeding events with the movement type inferred in our
track analysis.

Fish 9501 was observed for 8 h, during which its school
fed at the surface. Our analysis identified only a few short
intervals of localized motion in 9501’s track. Fish 9601 was
tracked for 29 h and was seen to feed on sand lance during
the afternoon of the second day. Our analysis, however,
found very little localized motion in 9601’s track, and
almost none during the time it was seen feeding. In both
these cases our algorithm seems to have performed poorly,
identifying as long-ranged periods where the fish were
known to be feeding. However, both tracks 9501 and 9601
were sampled at a much lower rate (once every 5 and
10min, respectively) than the rest of the tracks, which were
sampled at least once per minute.

Fish 9602 fed during the afternoon of the first day, and
using either movement model we identify this periods as
one of intensive localized movement. Fish 9603 was a
member of a school that preyed on sand lance, and our
analysis finds that the track is mostly localized motion.
Although the track is short, our analysis finds that fish
9704 was in localized motion during the tracking period,
and it was recorded to be foraging at the surface with its
school. In all these cases, our algorithm successfully
identified the observed feeding events as localized motion.
Not all the localized segments suggested by our

algorithm correspond to observed feeding times. Some
localized segments occur at night, when it was difficult or
impossible to visually identify tuna behavior. Other
localized segments may correspond to other forms of
resource exploitation, perhaps lingering near a likely, but
unoccupied, prey location or near a favorable thermal
feature. These comparisons suggest that many of the
localized segments identified by our algorithm do indeed
correspond to resource exploitation, and that our algo-
rithm performs best with finely sampled data.

4.4. Related work on tuna movement and distribution

Our data on Atlantic bluefin tuna comes from a study
that has been described before in the literature, but not
analysed previously for local versus long-range movement.
Lutcavage et al. (2000) summarized and described the
tracking effort, showing relationship of tracks to bathy-
metry in the Gulf of Maine, and verbally indicated times at
which foraging behavior was observed. Some initial ideas
about how tracks could be analysed as correlated and
biased random walks (CRW and BRW) and how such
work could lead to estimates of local population densities
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were formulated in Newlands and Lutcavage (2001). (See
also, Newlands, PhD thesis, University of British Colum-
bia.) Finally, in Newlands et al. (2004), spectral methods
were applied to identify distinct movement modes in which
the ‘‘frequency in the rate of change of speed and turning
angle’’ were strongly versus weakly correlated. It is well
known that a high rate of turning, coupled to slow speed
leads to a so-called ‘‘intensive search’’ strategy, leading to
suggested interpretation of such correlations in terms of
behavioral strategies. However, in our current work, we
have used simpler geometric properties of track length and
net displacement (coupled with an objective criterion) to
identify local versus long-ranged movement, by passing the
advanced spectral methods. We further use the segmenta-
tion of tracks and the statistical properties of switching
between movement types to infer ecological aspects of
interaction with the environment (putative resource sites),
an aspect not previously considered in the work described
above.
Schick et al. (2004) conducted an aerial survey of bluefin

tuna schools in the Gulf of Maine, and Royer et al. (2004)
similarly studied tuna schools in the Mediterranean Sea.
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In contrast to our work, neither paper considers small
scale individual movement of the fish nor track data of the
type we consider. Similar to our tracks, Brill et al. (2002)
used ultrasonic tags to track five juvenile tuna near the
eastern shore of Virginia. The smaller number of indivi-
duals tracked, however, would limit the power of our
methods. In all these cases, the distributions of tuna
schools were related to oceanic features such as sea surface
temperature, chlorophyll, thermal fronts, bathymetry,
and water color fronts, etc. This work is complementary
to ours in identifying the relationship of tuna to its
environment. For example, Royer et al. (2004) used
statistical techniques to check for spatial clustering and
for association between the school distribution and the
environmental variables. Since environmental variables
did not explain all features of the distributions, the
authors suggested that foraging, and inter- and intra-
specific interactions were likely to influence these spatial
distributions.

Block et al. (2005) describe an extensive electronic
satellite tagging project involving nearly 800 Atlantic
bluefin tuna migrating between the west Atlantic and the
Mediterranean over a period of many months. The project
involved larger distances and less detailed individual
trajectories, with the main aim to determine hot-spots
for possible spawning. This work, too, is less concerned
with the small scale movement patterns of individuals
(as in our paper) and more focused on trans-Atlantic
migration and spawning hot-spots. Similarly Wilson et al.
(2005) used satellite tags and Kalman filtering to track
approximately 60 tuna in the northwestern Atlantic,
focusing on the relationship between movement and sea
surface temperature.

4.5. Related work on marine mammals

The work of Bailey and Thompson (2006) on dolphin
foraging is most closely related to ours by ultimate goal,
but not by detailed methodology. Using visual sighting of
dolphins from a land-based instrument (theodolite) at
Inverness Firth, Scotland, the authors analysed about 30
tracks for intensive and extensive search behavior, and
compared with observed foraging. Classification of track
portions into correlated (CRW) and biased (BRW) random
walks were based on net-squared displacement, move
length and turning angle distributions, and visual compar-
isons of bootstrap simulations and theoretical predictions
(for CRW, by Kareiva and Shigesada, 1983, and for BRW,
by Marsh and Jones, 1988). The authors applied a first-
passage time analysis (Fauchald and Tveraa, 2003) to
determine the spatial scale of dolphin activity. They
identified sites of intensive searching and characterized
the sizes of such sites (analogous to our ‘‘patches’’). The
conclusion that movement patterns can be distinguished
between ‘‘extensive’’ and ‘‘ intensive’’ searching is similar
to our finding of local versus long-ranged movement
pattern.
4.6. Related work on animal movement

Our investigation of movement models for bluefin tuna
connects to a long tradition of work on biased or
correlated random walks in organisms. (See Kareiva and
Shigesada, 1983; Turchin, 1991; Casas and Aluja, 1997;
Morales and Ellner, 2002, among many others.) Here we
found that, for bluefin tuna, a combination of correlated
biased random walks (of minimally two types) is needed to
account for the motion. Unlike Kareiva and Shigesada
(1983) and Root and Kareiva (1984), we did not find a
linear relationship for net squared displacement, D2ðtÞ

versus t. (A similar deviation from this random walk model
was noted by Ward and Saltz, 1994.) Our analysis is purely
a Lagrangian one, and we do not attempt to infer
population parameters such as rates of diffusion or
transport from the limited data studied. (But see, e.g.
Grünbaum, 1994; Hill and Häder, 1997; Grünbaum, 1998,
1999 for examples of the latter approach.)
While we investigated trajectories (i.e. time-records of

motion), static animal tracks have been studied, e.g. by
Ward and Saltz (1994) for dorcas gazelles in sands and by
Becker et al. (1998) for wolves and game animals in snow.
For example, Ward and Saltz (1994) found that gazelles
made small displacements while foraging on lilies, inter-
spersed by a few larger displacements to move to new
foraging sites. The resolution of local versus long-ranged
behavior connects their work to ours, but they could
identify resource patches ab initio, unlike us. Other large-
scale tracking of moving animals include satellite-tracked
radio collared migrating caribou (Bergman et al., 2000). By
comparing individual tracks to correlated random walks,
the authors found evidence for a tendency to stay in or
return to specific favored locations (site fidelity). This is
similar to the localized motions we have described.
Terrestrial tracking studies have somewhat different

goals and challenges, but as they are related, we comment
briefly on some examples. In many of these, the topo-
graphy, landscape features, and other environmental
variables are a priori known, relatively static, and/or more
easily quantified, so that animal behavior can be modeled
in relation to its environment more directly. In an extensive
land-based tracking effort (the Starkey project Preisler
et al., 2004; Brillinger et al., 2002, 2004), the movements of
hundreds of elk are modeled using stochastic differential
equations, with potential functions representing landscape
features. The authors make up the potential function by
assuming repulsion from certain known features (such as
roads) and attraction to others (e.g. grasslands). They use
the data to produce vector fields of elk movement over the
landscape, and to test the correlation between the move-
ments and landscape features.
A marine environment presents special challenges, partly

due to its inherent continual variability. Specific features
that attract marine organisms, or that provide local
(Girard et al., 2004) or long-ranged (Brillinger and Stewart,
1998) environmental cues are not easy to observe in real
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10 km

Fig. 9. An example of Bayesian analysis of our tracks. Segmentations

based on a two-mode Bayesian analysis are shown for the tracks seen in

Figs. 5 and 6. The Bayesian segmentations are qualitatively similar to

those found by our method, but localized patches are larger and more

frequent.
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time. (The former focused on man-made ‘‘patches’’,
whereas the latter argued that the motion of elephant
seals, along a great circle in the north Pacific, is consistent
with global navigation.) Other studies of fish movement
such as Skalski and Gilliam (2000), Sparrevohn et al.
(2002); Westerberg (1982) e.g., for spawning migration of
ultrasonic-transmitter tagged Atlantic Salmon, are less
concerned with modeling the movement of individuals and
more with population dispersal.

4.7. Comparison with similar methods

In preliminary exploration of the data, we examined
plots of track length LðtÞ, mean squared displacement
D2ðtÞ, and tortuosity. We also examined speed, turning
angles, heading angles, and correlations between them.
These tests failed to uncover any identifiable trends. We
further quantified the density of observed positions to test
whether favored locations could be so identified, but such
tests of the purely spatial information were also incon-
clusive. We also evaluated Marsh and Jones’ (1988) test for
oriented movement based on the difference between
heading and turn angle distributions. Applying this test
to our tracks over short time windows, however, rarely
yielded statistically significant results, which precluded us
from drawing meaningful conclusions. The above explora-
tory analyses, though commonly used in the literature,
failed to reveal striking patterns in our data. More
interesting trends are seen in net displacement and track
length, and this motivated our approach.

Girard et al. (2004) also compare displacement and track
length for tuna, but for interactions with ‘‘artificial
patches’’, i.e., fish aggregating devices (FADs) of known
location and size. They measure displacement and length of
track with respect to a given FAD. Interestingly, they note
that Marsac and Cayré (1998) find the ‘‘interaction radius’’
of a yellowfin tuna with a FAD to be about 1.8 km, similar
to the mean radius we find for patches of localized
movement for bluefin tuna. This agreement may suggest
that the range at which tuna can perceive resources is
approximately 1 km.

Fauchald and Tveraa (2003) suggest another method for
estimating a typical patch size from track data. They
consider the time required to cross a circle of given
radius centered about each data point and take the
radius that maximizes the variance of these times to be
the typical patch size. Applying their analysis to our
data yields a patch radius of about 10 km, substantially
larger than the median radius we find. This disparity may
be due to differences in the time scales of behavioral
changes considered by the two models. By restricting our
calculations of DD=DL to a short window, our analysis
allows us to identify distinct patches within a track.
Fauchald and Tverra’s method, on the other hand,
averages over the entire track, so that several of the
patches revealed by our analysis may be subsumed in each
of their patches.
Unlike our relatively accurate track data, remote sensing
technologies (including archival tagging) generate data that
is sampled coarsely in space and time, typically less than 10
points per day. Moreover, the position of the tracked
individual is usually not obtained directly: for example, it is
to be inferred from light intensity recorded by sensors on
moving fish. This means that the measurement process has
significantly greater error than in our data. A variety of
state-space models (SSM) based on a Bayesian approach
have been developed for estimating measurement and
process noise, for combining movement data with prior
information, and for statistical testing of hypotheses
(Jonsen et al., 2003).
For example, Morales et al. (2004) analysed elk data

using a Bayesian approach. The low sampling rate of their
data (once per day over 100 days) imply that correlations
between steps are small in their model. To overcome these
small correlations, they adopted the Bayesian approach so
as to analyse many possible parameter sets consistent with
the data. Our higher resolution data allows us to identify a
set of best-fitting parameters for each movement model.
For comparison, we analysed our tracks using the

‘‘double-switch’’ model found in Morales et al. (2004)
and WinBUGS 1.4 (Spiegelhalter et al., 1999). The
resulting time series of movement states for each track
was smoothed over a time window of Dt ¼ 43 min to yield
the final segmentations. Fig. 9 shows segmentations using
this method for two tracks in our sample. Comparing with
Figs. 5 and 6 shows that the Bayesian method yields
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qualitatively similar segmentations, but that it classifies
some relatively straight sections as localized and, in
general, yields larger patches than our method.

The paper by Sibert et al. (2003) contains an excellent
description of the application of the Kalman filter method
to archival tagging data in bigeye and bluefin tuna (see also
Sibert et al., 2006). A Kalman filter is similar to a
predictor–corrector iteration wherein positions at previous
times, together with an underlying assumed movement
model and estimates of error in measurements are used to
obtain the most probable current location for time series
data. The method is based on a state-transition equation
(the underlying movement model), an equation that
describes measurement noise, and iterated updates of the
estimates. Optimization of a log-likelihood function then
leads to best fit parameters. In their approach, the Kalman
filter estimates both the corrected locations of individuals
as well as the parameters of advection–diffusion models
(which are well known to be continuous extensions of
biased random walks, see e.g. Okubo, 1980). In this sense,
the Kalman filter is based on an Eulerian continuum
modeling approach. The advantage of the technique is that
it provides an estimate for the errors of measurement, as
well as variance in parameter estimates.

Royer et al. (2005) provide a contrasting approach that
combines a second superb review of state-space methods
and current methods of tagging bluefin tuna, with clear
descriptions of their distinct probabilistic Lagrangian
(particle based) approach for modeling and data fitting.
The authors show how environmental variables such as sea
surface temperature can be assimilated to correlate
interactions of tuna with its environment. They carefully
explain and show tests of their Monte Carlo Particle Filter
technique and compare it to performance of the Kalman
filter using artificial data.

The ability to extract behavioral information from track
data depends on the resolution of that data relative to time
and spatial scales of interest. Codling and Hill (2005) showed
how the sampling rate of trajectories can influence derived
quantities such as mean speeds, turning angles, etc. In our
data, the sampling rate is generally high enough (order of
1min) to allow reasonable results for behaviors on the order
of the foraging behaviors studied here. At the same time,
other data sets allow for far greater level of detail. Brillinger
et al. (2004, 2002) could reconstruct fuller spatial density
contours, vector fields of apparent velocities at peak activity
times, etc., as well as circadian cycles in activity. Their work
was less concerned with relating the motion of the animals to
specific behavior such as foraging. By comparison, our data
allowed us to draw reasonable conclusions about individual
behavior, but did not suffice for the level of resolution of
space utilization that their data set could afford.

4.8. Other applications of the segmentation algorithm

Our algorithm can be generalized. Total length of track
and displacement easily generalize from 2D to 3D, but
turning angles present certain complications in 3D. It can
also be adapted to analyzing static records. Where the
associated time record is unavailable, the window in the
segmentation algorithm could be based on an arc length of
track, rather than a time interval of motion. In this case, we
could still classify long-ranged and localized portions and
estimate the typical patch size associated with foraging, but
we could not address how often patches are encountered.
Our data were best fit by two motion types, but other
situations or other organisms may require more. For
example, many organisms have a ‘‘resting’’ state where
motion has essentially ceased, or distinct predator avoid-
ance behaviors, requiring a greater repertoire of movement
types. Additionally, ocean currents can strongly affect
tracks of marine organisms (Gaspar et al., 2006); removing
the complicating effect of currents might enhance our
ability to distinguish movement types.
Aside from the analysis of bluefin tuna, we carried out a

number of preliminary tests of our segmentation algorithm
using two motion types on data sets for other taxa. Our main
motivation for this comparative study was to assess to what
extent methods of this paper and lessons learned here could
be generalized to other tracking studies. Identifying appro-
priate species and studies, obtaining data, and assessing the
utility of the techniques on that data was a significant
undertaking, and, in hind-sight, helped us to place our efforts
into a wider context, despite limited payoff. Data were
provided only for preliminary assessment purposes, so results
can be only briefly summarized here.
Results for four elk tracks made available by Morales

et al. (2004) appear reasonable, but the data are currently
too limited to reliably estimate patch sizes. In tests with
penguin data provided by Dee Boersma (Biology, Uni-
versity of Washington) our algorithm found few localized
movement segments. When applied to data on albatross,
kindly provided by Richard Phillips (British Antarctic
Survey), our algorithm identifies distinct periods of long-
ranged and localized motion, but since the data are
sampled intermittently, technical aspects of interpolation
need to be addressed before full interpretation. Uniquely,
in caribou data provided by Robert Otto (Environment &
Conservation, Newfoundland and Labrador) distinct
regions of high and low DD=DL were not found, possibly
because of a low sampling rate. (See Codling and Hill, 2005
and previous comments for the effect of sampling rate.)
Overall, while the segmentation algorithm described here
likely has wider applicability, it is best suited to accurate
track data sampled relatively finely and with relatively
constant time step. Combining our method with more
advanced filtering techniques may help to improve such
results.

5. Conclusions

Our goal in this paper was to use observed movements of
bluefin tuna to draw inferences about the difficult to
observe distribution of resources they utilize. To do so, we
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segmented tracks into long-ranged and localized movement
patterns based on the ratio of displacement to length of track
over a time window, using objective minimization criteria.
We hypothesize that these segments are periods of time in
which bluefin tuna migrate over long distances versus explore
local resource patches, and thus we derive rough bounds on
the distribution of resources exploited by bluefin tuna in the
Gulf of Maine. We tested our method using two movement
models, and found that the details of the inferred resource
distribution are sensitive to the choice of model. Comparison
between inferred localized movement and observed feeding
activity suggests that our algorithm can effectively identify
resource exploitation, although low sampling rates may
hinder such inferences. We place an upper bound on the
number density of resource patches in the Gulf of Maine of
between 5 and 9 patches per 100 km2 and estimate that the
patches average about 1 km in size.

Our conclusions on bluefin tuna behavior and on their
environment are limited by scarcity of data and accuracy of
the movement models. For example, our estimates for r,
the density of patches per unit area, should be considered
as loose upper bounds, since we assumed that encounters
with resource patches are random. Real bluefin tuna likely
follow environmental cues such as topographic features,
ocean fronts, and prey density to locate resources more
efficiently, and resources may be clustered. Programs to
track tuna are ongoing, and including more data would
improve our ability to refine movement models and to test
more detailed behavioral hypotheses. Ideally, physiological
variables, such as hunger, and environmental variables,
such as temperature and bathymetry, would be included in
the movement model (e.g. Kirby, 2001). Further work
could also consider depth information and schooling
effects that we have neglected. It is to be hoped that future
synergy between data collection and theoretical analysis
will lead to a fuller understanding of tuna behavior and
predictive models to aid in conservation efforts.
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Appendix A. Numerical evaluation of heading and turn

angle distributions

Here we develop an iterative method for calculating the
heading and turn angle distributions for the biased turning
model. This procedure is used to find the steady-state
distributions that we fit to the observed distributions.
Let Hi denote the heading probability distribution after i

moves, such that HiðyÞdy is the probability that the
heading angle lies between y and yþ dy. In the first step of
the vectorial bias movement model, we apply a turn, Z,
drawn from some distribution. This yields the intermediate
heading vector ~u shown in Fig. 4. We call the distribution
of these intermediate headings Hiþ1=2ðyiþ1=2Þ. In our
application to tuna, the turn distribution is a circular
Laplace, denoted by LðZÞ. The probability density of
making a turn from yi to yiþ1=2 is Lðyiþ1=2 � yiÞ. Taking the
integral of this density over all initial heading angles,
weighted by the probability of being at that initial heading
angle, yields

Hiþ1=2ðyiþ1=2Þ ¼

Z p

�p
HiðyiÞLðyiþ1=2 � yiÞdyi. (A.1)

In all our integral evaluations, we approximate the heading
distributions by fifth order splines with 50 knots over the
interval ð�p;pÞ.
Next we add in the bias vector, by~p. Some trigonometry

shows that the heading after the bias is applied, yiþ1, is
related to the intermediate heading, yiþ1=2, by

tanðyiþ1Þ ¼
sin yiþ1=2 þ by sin yp

cos yiþ1=2 þ by cos yp

� tanðbðyiþ1=2ÞÞ, (A.2)

where by is the bias weight, and yp is the preferred heading.
Since the function b is one-to-one over ð�p;pÞ we have

Hiþ1ðyiþ1Þ ¼
Hiþ1=2ðyiþ1=2Þ

jb0ðyiþ1=2Þj
, (A.3)

where b0 is the derivative of bðyiþ1=2Þ with respect to yiþ1=2.
Starting from an initial heading distribution uniform

over ð�p;pÞ (representing an unoriented animal), we iterate
Eqs. (A.1) and (A.3) to converge to a steady-state heading
distribution, H1. Our convergence criterion is that the
root-mean-squared difference between Hiþ1 and Hi be less
than 10�4. Achieving this takes about 12 iterations for
typical values of a and by.
Once we have the steady-state heading distribution,

H1ðyÞ, we can use it to find the steady-state turn angle
distribution. For any given heading, yi, the distribution of
headings on the next step, Hiþ1ðyiþ1jyiÞ, can be found from
Eqs. (A.1) and (A.3). Since the probability of making a
turn angle f is the probability of turning from yi to
yiþ1 ¼ yi þ f, the distribution of turn angles given a
previous heading of yi is UiðfjyiÞ ¼ Hiþ1ðyi þ fjyiÞ. To
find the overall turn distribution we take the weighted
integral over all possible steady-state initial headings:

U1ðfÞ ¼
Z p

�p
U1ðfjyÞH1ðyÞdy

¼

Z p

�p
H1ðfþ yjyÞH1ðyÞdy. ðA:4Þ

Again we work with fifth order splines with 50 knots
over ð�p;pÞ. These splines are what we use to calculate
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likelihoods for fitting a and by to the observed distribu-
tions.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found in the online vesion at 10.1016/j.jtbi.2006.10.014.
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